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Many studies of weakly nonlinear surface waves are based on so-called reduced 
integrodifferential equations. One of these is the widely used Zakharov four-wave 
equation for purely gravity waves. But the reduced equations now in use are not 
Hamiltonian despite the Hamiltonian structure of exact water wave equations. This is 
entirely due to shortcomings of their derivation. The classical method of canonical 
transformations, generalized to the continuous case, leads automatically to reduced 
equations with Hamiltonian structure. In this paper, attention is primarily paid to the 
Hamiltonian reduced equation describing the combined effects of four- and five-wave 
weakly nonlinear interactions of purely gravity waves. In this equation, for brevity 
called five-wave, the non-resonant quadratic, cubic and fourth-order nonlinear terms 
are eliminated by suitable canonical transformation. The kernels of this equation and 
the coefficients of the transformation are expressed in explicit form in terms of 
expansion coefficients of the gravity-wave Hamiltonian in integral-power series in 
normal variables. For capillary-gravity waves on a fluid of finite depth, expansion of 
the Hamiltonian in integral-power series in a normal variable with accuracy up to the 
fifth-order terms is also given. 

1. Introduction 
The Hamiltonian description of surface waves, first suggested by Zakharov (1968), 

more than twenty years ago (see also Broer 1974; Miles 1977), has placed the problem 
of surface waves in a line of numerous problems of nonlinear dispersive waves in 
continuous conservative media (Zakharov 1974). In this method the evolution 
equations for irrotational surface waves are presented in the form of the canonical 
Hamilton equations in which the Hamiltonian is the total energy of the waves and the 
canonically conjugate variables are the free-surface elevation and the velocity potential 
evaluated at the surface. 

Advantages of the Hamiltonian approach are now well-known. In particular, 
specific features of a medium turn out to be, in large part, unessential; all versions of 
the perturbation theory are considerably simplified and standardized ; results of 
calculations obtained for a particular medium are easily assigned a general-physics 
meaning. One of the consequences of the Hamiltonian approach is an integro- 
differential evolution equation of standard form for a so-called normal variable (or, 
in other terminology, complex wave amplitude) a related by a transformation of 
Fourier type with ‘natural’ physical variables. The general structure of this equation 
is the same for waves of a different physical nature in nonlinear dispersive media, 
allowing the introduction of canonical variables, and specific features of waves are 
absorbed by coefficients of this equation and, in particular, by the dispersion relation 
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of linear waves. From this evolution equation for a one usually derives somewhat more 
simple integrodifferential equations for an auxiliary variable 6, which we term ‘ reduced 
equations’. For the case of purely gravity waves an example is an equation cubically 
nonlinear in b describing weakly nonlinear four-wave interactions, often referred to as 
the Zakharov equation. The reduced equations usually serve as a starting point for the 
study of wave instabilities, long-time wave evolution, derivation of transfer (kinetic) 
equations for spectrum of random wave field and for other applications. 

But the reduced equations now employed have a fundamental shortcoming : they are 
not Hamiltonian (and thus non-conservative), although the exact water wave equations 
form a Hamiltonian system. The fact that the Zakharov equation in its original version 
(Zakharov 1966, 1968; see also Crawford, Saffman & Yuen 1980, where some 
omissions in the earlier publications were corrected) is not Hamiltonian was pointed 
out by Caponi, Saffman & Yuen (1982). This has puzzled investigators up to now, 
though this non-conservative reduced equation remains in use. There was even the 
supposition that this non-conservativity is completely related to the retention of only 
cubic terms in the Zakharov equation, and that retaining the fourth- and the higher- 
order terms must lead to energy conservation with increasing accuracy (Stiassnie & 
Shemer 1987). 

In fact this non-conservativity is caused solely by shortcomings of the techniques 
used for derivation of the Zakharov reduced equation. There are at least two causes for 
the non-Hamiltonian structure of this equation. Firstly, in some of the papers the 
evolution equation for a was derived from the original hydrodynamical equations of 
surface wave theory, but not from the Hamiltonian formulation, and therefore the 
coefficients of this equation do not satisfy proper symmetry conditions (see e.g. Yuen 
& Lake 1982; Stiassnie & Shemer 1984) expressing the Hamiltonian structure of the 
system. This leads to apparent violation of the Hamiltonian structure. Another, more 
serious, cause for violation of the Hamiltonian structure of the reduced equation for 
b is connected with the techniques which have been used for its derivation from the 
evolution equation for a. This reduced equation was first derived by Zakharov (1966, 
1968) by heuristic considerations, which later were somewhat formalized by Crawford 
et al. (1980). Both methods lead to the non-Hamiltonian reduced equation not 
conserving energy. 

However, there is another technique for derivation of the reduced equations, quite 
natural within the framework of the Hamiltonian formulation. It is the classical 
method of canonical transformations from discrete mechanics generalized to the 
continuous case. In this method, the variables a and b are related by a canonical 
transformation prescribed in the form of an integral-power series in b. Coefficients of 
this transformation can be chosen so as to eliminate ‘unimportant’ non-resonant terms 
from the Hamiltonian expressed in terms of the new variable b. The resulting ‘reduced 
Hamiltonian ’ yields, through the canonical Hamilton equation for b, the Hamiltonian 
reduced equation. This general idea was mentioned by Zakharov (1974) and West 
(1981) but without detailed elaboration. 

In this paper, most attention is given to the reduced equations themselves and not 
their possible applications. In $2, we summarize the basic equations of the Hamiltonian 
theory of surface waves and describe the general idea of using canonical trans- 
formations for derivation of the reduced equations. In $3,  we discuss the conditions 
under which the transformation from a to b in the form of integral-power series be a 
canonical one and derive the coefficients of the canonical transformation and the 
kernels of the five-wave reduced equation. Expansion of the Hamiltonian for 
capillary-gravity waves on a fluid of finite depth in integral-power series with accuracy 
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up to the fifth-order terms is given, for completeness, in $4. A discussion and some 
comparisons with other approximations are given, finally, in 9 5.  

2. Background and general considerations 
Let <(x, t )  be the vertical displacement of the surface of an inviscid laterally 

unbounded fluid of constant depth h above the point x = (x, y )  at time t ,  $(x ,  z, t )  be 
the velocity potential for an irrotational flow moving under the influence of gravity 
(with g as gravitational acceleration) and surface tension (with y as ratio of the surface 
tension coefficient to the fluid density), z be the vertical coordinate directed upwards 
with its origin on the undisturbed surface z = 0, and $(x, t )  = $ [ x ,  <(x, t) ,  t]  be the 
velocity potential evaluated on the surface. Then the evolution equation describing the 
wave motion can be put in the form of Hamilton canonical equations with the pair of 
canonically conjugate variables { and $ (Zakharov 1968; Broer 1974; Miles 1977): 

where S stands for functional derivatives, and the Hamiltonian (the total energy) 
H = K+ 17 is the sum of the kinetic ( K )  and potential (17) energies divided by the fluid 
density. These are given by 

17=- c d x + y  {[1+(VQZ]~-1}dx, 
2 ‘s s 

where V = @/ax, a/i3y) is the horizontal gradient operator and integration with 
respect to x is extended over the entire horizontal plane. The velocity potential must 
satisfy the Laplace equation V2$+c12$/az2 = 0 in the domain - 03 < x, y < + 03, 

-h < z < { (x,  t )  and the boundary conditions on the bottom a$/az = 0 for z = -12. 
The kinematical and dynamical boundary conditions at the surface are not required for 
the Laplace equation because they are taken into account by the above Hamiltonian 
formulation. In (2.1) the Hamiltonian should be considered as a functional of { and $. 

Introduce the Fourier representations of { (x,  t )  and $(x, t )  by the relations 
. c  

<(:(XI = I {(k) eik.x dk, {(k) = <*( - k) ,  
L 1 L  J 

dk7 Ilr(k) = $*( - k) ,  

where k = (k,,k,) is the horizontal wave vector, integration with respect to k is 
extended over the entire k-plane, the asterisk denotes complex conjugate, and explicit 
dependence of { and $ on t is suppressed for simplicity of notation. We denote here 
functions and their Fourier transforms by the same symbols, distinguishing them by 
their arguments. The Fourier transformation is a canonical one and thus reduces the 
canonical equations (2.1) into the canonical ones 
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with the pair of canonically conjugate variables <(k) and $*(k). Now His  a functional 

Further canonical transformation to the new pair of canonically conjugate variables 

(2-7) 

of 5@), <*PI, $W, $*W. 

a(k) and ia*(k) defined by the relations 

C(k) = A ( k )  [a(k) + a*( - k)],  $(k) = - iM(k)[a(k) -a*( - k)] ,  

with 

where w(k) is the dispersion relation of linear waves defined by 

w(k) = b(k)q(k)ld, ~ ( k )  = g+ylk12, q(k) = [kl tanh([k[h), (2.9) 
reduces (2.6) to the single equation 

.aa(k) - 6H 
I--- 

at &a*(k) ' (2.10) 

Here H is a functional of a(k) and a*(k). Equation (2.10) and its complex-conjugate 
form the pair of canonical Hamilton equations. 

We are interested in waves of small but finite amplitudes, i.e. in weakly nonlinear 
waves. Assuming small wave slopes, we can formally expand the Hamiltonian 
H = H(a, a*) into integral power series in powers of a and a* (see $4). For weakly 
nonlinear waves one can retain in the expansion a finite number of terms. (Some effects 
of truncating the Hamiltonian were recently studied by Milder 1990.) Here we consider 
this expansion with accuracy up to and including the fifth-order terms. It is convenient 
to place this expansion in the form 

H = w, a t  a, dko + Uif\, ,(a,* a, a, + a, u: u t )  60-l-2 dk,,, s s 
+ j ui:\, z('0 01 a2 + a, a1 a,) ~ 0 + 1 + 2  dkon 

+ 1 vi:\, 2, ,(a,* a, a3 +a, 0: at  a,*) 80-1-2-3 dk0123 

'S * * *  

'S  

'I 
' S  

+: 1 'if\, 2 , 3  a,* a2 a3 '0+1-2-3dk0123 

+- V(4) * * * *  
4 0 , 1 , 2 ,  3(a0 '1 '2 '3 + '0 '2 a3) '0+1+2+3 dkO123 

+ 1 wit\, 2,3,4(',* a2 '3 '4 + ',* ',* a:) '0-1-2-3-4 dk0123, 

+z %":, 2,3,4('0* '3 '4 + '0 ',* a,* ',*I 'O+I-2-3-4 dk0123, 

* * * * *  +- W(5) 
5 0,1 ,2 ,3 ,  4(a0 '2 '3 '4 + '0 '1 '2 a3 '4) 'O+I+2+3+4 dk012347 

(2.11) 
where the perturbation parameter (the wave slope) has been drawn into a. 

In expansion (2.11) we have introduced the compact notation in which the 
arguments ki in a, w ,  U(lz), Vcn), W(lz) and &-functions are replaced by subscriptsj, with 
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the subscript zero assigned to k.  Thus, for example, aj  = a(kj, t ) ,  wj = w(kj) ,  
Uiyi, , = U(n) (k ,  k,, k2), 80-l-2 = 6(k - k ,  - k2) ,  etc. For differentials we have used the 
notation dk, = dk, dk,,, = dk dk, dk,, etc., and the integral signs denote cor- 
responding multiple integrals with the limits from - 00 to + m. The normalization 
coefficients (2.8) are defined so to present the quadratic part of the Hamiltonian as in 
(2.11). The nth order parts of the Hamiltonian describe n-wave interactions. 

It is convenient to assume that the coefficients Vn),  V(n) ,  W@) satisfy the ‘natural 
symmetry conditions’, which specify that the integrals in (2.1 1) are unaffected by 
relabelling of the dummy integration variables. Thus, the coefficient Uiti ,  should be 
considered as symmetric under the transposition of the arguments 1 and 2, as are Uf\, 
under all the transpositions of 0, 1 and 2, Vit\, 2 ,  under all the transpositions 1, 2 and 
3, Viz\, ,, under the transpositions of the arguments inside the groups (0,l) and (2,3), 
Wiz),, 2 ,  3, under all the transpositions of the arguments inside the groups (0,l) and 
(2,3,4), and so on. The coefficients should also satisfy symmetry conditions expressing 
the reality of the Hamiltonian. There is only one such condition for the Hamiltonian 
in the form (2.1 l), namely the coefficient Vi2\, 2 ,  should be symmetric under the 
transpositions of the argument pairs (0,l) and (2,3), i.e. Vi”, 2, = Viti, ,. Thus, the 
coefficient Vi?;, 2, should satisfy the following symmetry conditions : 

‘(2) 0 , 1 , 2 , 3 -  - ‘1,0,2,3= (2) V i 2 ) 1 , 3 , 2 =  vi?)3,0,1‘ (2.12) 

We note that when calculating the coefficients using the Hamiltonian (see $4) they, 
as a rule, do not satisfy natural symmetry conditions and, therefore, should be 
symmetrized by substituting for the sums of non-symmetrical coefficients, taken over 
all transpositions of corresponding groups of arguments, divided by the number of 
these transpositions. The symmetry expressing reality of the Hamiltonian must result 
automatically. 

By virtue of (2. lo), the following evolution equation corresponds to the Hamiltonian 
(2.1 1):  

‘1 ‘it\, 2 , 3  ‘1 ‘2 a3 ‘0-1-2-3 dk123 

+J”:?:2,3 a ; a3 ‘0+1-2-3 dk123 

+ 1 ‘it:, 1 , O  ‘,* a3 ‘0+1+2-3 dk123 

+ J  T: ... a : ‘2 * ‘3 *’ O+l+2+3dk123 

+ 2 , 3 , 4  a3 ‘4 ‘0-1-2-3-4 dk1234 s 
Wi$!l, 2 , 3 , 4  ‘ 2  ‘3 ‘4 ‘O+l-2-3-4 d k 1 2 3 ~  
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(2.13) 

The Hamiltonian structure of this integrodifferential equation is expressed, in 
particular, in the fact that not all individual integrals on the right-hand side have 
different kernels - some of them have the same upper indices. When deriving an 
analogous equation from the original hydrodynamical equations of surface wave 
theory this Hamiltonian structure is not observed and all the kernels turn out to be 
different (Yuen & Lake 1982; Stiassnie & Shemer 1984). Certainly, after proper 
symmetrization of the kernels, obtained from the original hydrodynamical equations, 
both methods of derivation of evolution equation for a must lead to the same result, 
but the symmetry conditions are not clear without the Hamiltonian formulation. 

Consider now a canonical transformation from variable a(k)  to a new variable b(k). 
A transformation a = a(b, b*) will be canonical if the evolution equation for b(k) has 
the same Hamiltonian form as (2.10), i.e. 

(2.14) 

where fi = fi(b, b*) is the Hamiltonian H = H(a, a*) after substitution of the 
transformation a = a(b, b*). 

For the transformation to be a canonical one some conditions, which we will term 
'canonicity conditions', must be satisfied. There are different forms of canonicity 
conditions in classical mechanics. They are easily generalized to the continuous case. 
One of them, probably the most well known, is expressed through the Poisson 
brackets : 

dq = 0, (2.15) 1 Sa(k) a@') 8a(k) 6a(k') 
W q )  8b*(q) 8b*(q) W q )  

(2.16) 

Postulate the canonical transformation from a(k) to b(k) in the form of integral- 
power series : 

a0 = bo + At\, 2 b, b2 80-1-2 dkI2 + A:':. 2 b: b2 60,l-Z dkI2 s s 
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‘1 ‘i3\, 2 , 3 , 4  b: b,* b3 b4 ‘0+1+2-3-4 dk1234 

‘1 ‘:4\, 2 , 3 , 4  b: b,* ’,* b4 ‘0+1+2+3-4 dk123, 

+1‘:!i,2,3,4b: ’zb,* b,* ‘0+1+,+3+4dk1234+”” (2.17) 

In the following, we will suppose that the coefficients A ( n ) ,  Pn),  C(%)  satisfy proper 
natural symmetry conditions. The canonicity conditions (2.15) and (2.16) impose some 
constraints on the coefficients A(n),  B‘”), C(%) which will be briefly discussed in the next 
paragraph. 

The Hamiltonian fi is obtained by substitution of (2.17) into (2.11) and, with 
accuracy up to the fifth-order terms, has the same form as (2.11) but replacing aj  by 
bj, and Vn), V ( n ) ,  Wn)  by new coefficients @n), p(n) ,  @(n) resulting from the 
substitution indicated. Obviously, these new coefficients must satisfy the same 
symmetry conditions as the old ones. In particular 

“(2) (2.18) 

The canonical transformation enables a fundamental simplification (or, in other 
words, reduction) of the Hamiltonian fi eliminating therein ‘unimportant’ terms by 
suitable choice of the coefficients A(n) ,  B‘”), P). The reduction of the Hamiltonian is 
crucially dependent on the shape of the dispersion curve w(k), being different for 
capillary-gravity (or purely capillary) and purely gravity waves. Consider these cases 
separately. 

Cupillary-gravity waves : three-wave interactions. Consider first, for simplicity, the 
case V ( % )  = W(%)  = 0 and put 

” 
“(2) - ”(2) 

‘0 ,1 ,2,3-  ‘ 1 , 0 , 2 , 3 =  ‘!!2\,3,2= ‘2,3.0,1’ 

This transformation is canonical up to the second-order terms in b and gives 
= U(l), 0(3) = 0. Thus, in this case, the reduced Hamiltonian is 

E? = J w ,  b,* bo dk, + Ui;\, (b,* b, b,+ b, b,* b;) do-l-2 dk,,,. s (2.20) 

Accordingly to (2.14) the corresponding three-wave reduced equation is 

Purely gravity waves: four-wave interactions. Put C(:) = 0, W ( n )  = 0. In this case the 
coefficients A ( n )  and B(%) can be chosen so to make Urn) = 0, rn = 1,3 and p(n)  = 0, 
n = 1,4. Thus, the reduced Hamiltonian is 

and the corresponding four-wave reduced equation reads 

(2.23) 

The coefficient p@) is given in explicit form in $3.  
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Purely grauity waves: combined four- and$ve-wave interactions. By a suitable choice 
of the coefficients A(n) ,  Pn), C ( n )  in the full form of the - canonical transformation (2.17) 
one can get o(m) = 0, m = 1,3, pn) = 0, n = 1,4, W ( p )  = 0, p = 1,5, so the reduced 
Hamiltonian takes the form 

and the corresponding jive-wave reduced equation becomes 

+ 1 @A?\, 2 , 3 , 4  bT '2 '3 '4 'O+I-,-3-4 dk1,,4 

+? w4, 3 , 2 , 1 , 0  bT b,* b3 b4 '0+1+2-3-4 dk1234. (2.25) 3l " @ )  

The coefficient @(,) is also given in explicit form in $3. 
In reducing the Hamiltonian H we come up against the 'problem of small divisors', 

formally resembling the situation in celestial mechanics and related in the present case 
to the appearance of non-integrable singularities in the coefficients of the canonical 
transformation near the manifolds 

Ao-l-2 = 0, k - k , - k 2  = 0, (2.26) 
(2.27) 

A0+1+2--3-4 = 0, k + k,  + k,  - k3 - k, 0, (2.29) 

where notation like A,-,-, = w, - w,  - w,, etc. is introduced. (Equations (2.26)-(2.29) 
are termed the resonance conditions, and the frequency differences involved, A, the 
resonant ones. Note, that the resonance conditions (2.28) and (2.29) are equivalent in 
the sense that the former follows from the latter by renumbering of wave vectors.) For 
instance, the canonical transformation (2.19) is possible because for capillary-gravity 
waves the conditions do+,+, = 0, k + k ,  +k ,  = 0 cannot be satisfied. In the case of 
capillary-gravity waves, an attempt to eliminate the term with 8') from the 
Hamiltonian fi leads to singularities in A( , )  and A @ )  near the manifold (2.26). In the 
case of purely gravity waves, the conditions (2.26) cannot be satisfied and the cubic part 
of fi (i.e. the terms with @l) and 8(3)) can be completely eliminated. But an attempt 
to eliminate the terms with p(') and @'(') leads to singularities in B(,), C(') and C(3) near 
the manifolds (2.27)-(2.29), correspondingly (these statements will be more clear from 
the results of 53) .  The non-resonant terms in the Hamiltonian fi, which can be 
eliminated by suitable canonical transformations, are, in a sense, unimportant. 

All of the above reduced Hamiltonians are obvious integrals of motion, i.e. they all 
conserve the total energy. In addition, there are other integrals of motion (see 93). 

Note that instead of (2.23) one often uses the equation 

AO+,-,-, = 0, k i- k,  - k,  - k ,  = 0, 
A0+1-2-3-4 = 0, k + k ,  - k ,  - k3 - k4 = 0, (2.28) 

at 
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which is obtained from (2.23) after the change of variable 

b(k, t )  = B(k, t )  exp [ - iw(k) t ] .  

This equation describes the slow evolution of a gravity wave field due to weakly 
nonlinear four-wave interactions. The non-Hamiltonian version of this equation was 
first derived by Zakharov (1966, 1968) from equation (2.13), with V ( m )  = 0, m = 1,4 
and Wn) = 0, n = 1,2,5, by heuristic considerations (see, also, Crawford et al. 1980). 
The method of derivation suggests that the slow evolution of B(k, t )  is determined 
mainly by interactions of wave fours approximately satisfying the resonance conditions 
(2.27). This method gives the reduced equation whose kernel does not satisfy all 
symmetry conditions (2.18) (it possesses only the symmetry relative to transpositions 
of the arguments 2 and 3), and thus is not Hamiltonian. The canonical transformation 
technique, described in detail below, automatically removes this shortcoming. 

3. The coefficients of canonical transformation and the kernels of reduced 
equations 

In the following paragraphs, attention is paid primarily to the five-wave reduced 
equation (2.25), which, in a sense, comprises the four-wave equation (2.23), so the 
latter, generally speaking, should not be derived separately. Derivation of (2.23) by the 
procedure outlined above of direct reducing the Hamiltonian to the form (2.22) taking 
account of the canonicity conditions (2.15) and (2.16) is given in some detail in 
Krasitskii (1990), but without reference to water wave problems (for a concise 
discussion, more close to the present paper, see also Krasitskii 1991). But this 
procedure, applied for deriving (2.24), leads not only to extremely cumbersome 
algebra, but also to some difficulties of taking account of canonicity conditions in the 
form (2.15) and (2.16), which are rather complicated as well. An equivalent method of 
directly reducing the Hamilton equation (2.13) to the Hamilton reduced equation 
(2.25) using the transformation (2.17) turns out to be far more simple. It is the method 
which we will use below. 

To realize the method one should substitute the transformation (2.17) into (2.13), 
substitute arising derivatives of ab,/at from equation (2.25) and then collect, after 
proper symmetrization, the kernels of the integrals with the factors b, b,, b: b,, . . . , 
bT b: b,* b:. As a result, we obtain the following twelve equations: 

(3.1) 
( 3 4  
(3.3) 
(3.4) 
(3.5) 
(3.6) 
(3.7) 
(3.8) 
(3.9) 

q’,, 2 + d o - 1 - 2  A p l ,  2 = 0, 
2 q ’ , ,  0 + do+,-, A?\, 2 = 0, 
u%, 2 + AO+1+2 A E ,  2 = 0, 

ziy:, 2, 3+3 ‘i:)Z, 1,O + ’0+1+2-3 BF\, 2 , 3  = 0, 
zf!4)1, 2 , 3 +  ‘i:;, 2,3+’O+I+2+3 Bt)I, 2 , 3  = ‘ 9  

B(1) zit:, 2,  3 + ‘if;. 2 ,  3 +d0-1-2-3 0, 1 ,  2 ,  3 = O, 
(2) 

‘::!I, 2 , 3  = z$”:, 2 , 3  + ‘i”:, 2 , 3  +‘0+1-2-3 ’ O , l ,  2 , 33  

(1) (1) (1) 
X0,1,2,3~4tW~,l~2,3,4~dO-l-2-3-4C0,1,2~3,4 - (2) (2) 

wO, 1,  2 ,  3 ,  4 = Xi”, 2,  3 ,  4 + wi,”’,, 2,  3 , 4  + ‘0+1-2-3-4 ‘0, 1 ,  2 ,  3 ,43  

5 3 @(2) 4 ,  3 ,  2 , 1 , 0  = xO, (3) 1 ,  2 ,  3 ,  4 +:wi:g, 2 , 1 , 0  + ’O+1+2-3-4 ‘0, (3) 1 ,  2 ,  3 . 4 ,  (3.10) 
Xi:!, 2 ,  3 ,  4 + wit$, 2,  1, 0 + ’0+1+2+3-4 ‘0, (4) 1, 2 ,  3 , 4  = ‘ 9  (3.11) 
x 0 , 1 , 2 , 3 , 4 +  ( 5 )  wI!f:,2.3,4+40+1+2+3+4 ‘ 0 , 1 , 2 , 3 , 4  ( 5 )  = O. (3.12) 
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The functions Z(n)  and are given in an Appendix.? For given n the symmetry 
properties of the functions Z(n) and Sn) are the same as for the coefficients B(n) and 
C ( n )  correspondingly. 

C ( n )  can be subdivided into the two groups: ‘non- 
resonant’ (A(’), A(’), A(3),  B(l), B(3) ,  B(4), C(l), C(41, C 9  and ‘resonant’ (B‘’), C@),  C(3)) 
ones. The non-resonant coefficients are derived immediately from the above equations : 

The coefficients A(n) ,  

(3.13) 
(3.14) 
(3.15) 
(3.16) 
(3.17) 
(3.18) 
(3.19) 
(3.20) 
(3.21) 

All non-resonant coefficients are inversely proportional to ‘the non-resonant 
frequency differences’ which cannot vanish for a purely gravity wave dispersion law. 
For example, for the coefficient B(I) this means that the system of equations 
Ao-l-2-3 = 0, k - k, - k,  - k, = 0 has no solutions. This is the circumstance which 
allows the possibility of reducing the Hamiltonian H ,  i.e. elimination of the non- 
resonant (‘unimportant’) terms from it. An attempt to eliminate the resonant terms 
using the conditions p(’) = 0, @(’) = 0, in (3.5), (3.9), (3.10) leads to the appearance 
of non-integrable singularities in the coefficients B@), C@),  03) near the manifolds 
defined, respectively, by (2.27)-(2.29), as was mentioned in $2. Note that relations 
(3.13)-(3.18) were derived by Krasitskii (1990) through the canonicity conditions 
obtained from the Poisson brackets and directly reducing the Hamiltonian H to the 
form (2.22), but by far more cumbersome calculations. 

The resonant coefficients of the canonical transformation B@), C(’), C(3) and the 
kernels of the reduced equation f@), @(’) cannot be obtained uniquely from (3.9, 
(3.9), (3.10). It will be shown below that they can be determined correct to an arbitrary 
function satisfying some symmetry conditions. This is because the canonical 
transformation admits a certain freedom which for non-resonant coefficients is limited 
by the condition of exclusion of the non-resonant terms from H .  

For determining B@) and f(’) we turn to (3.5). Using the symmetry properties (2.12) 
and (2.18) for the kernels V2) and p(2), it is easy to eliminate them from (3.5) and to 
obtain for B(’) the following equation: 

(3.22) 

which, actually, is the canonicity condition for P). It is clear from the structure of this 
equation that its general solution Bt\ ,2 ,3  = Bc)l,3,2 should be presented as a sum of 
some particular solution A,, 1, 2,  - - Ao, and an ‘arbitrary function’ A satisfying the 
conditions A, 2 ,  - - Ao, 3,  - - - A 3 ,  2 ,  ,. The function A can be chosen for convenience 
(changing B‘i) simultaneously changes both p(2) and b(k), but leaves a(k) unchanged 
in the canonical transformation). In what follows, we will consider that the function h 
is identically equal to zero, and Bf)I, 2, is a suitable particular solution of the equation 

t A copy of the Appendix is available from the Editorial Office or the author. 

3, 
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(3.22). This particular solution should be symmetric under the transpositions of the 
arguments 2 and 3, and non-singular when d o + 1 ~ 2 - 3 + 0 .  

The structure of (3.22) suggests that this particular solution can be sought as a linear 
combination of the functions Z(') of different combinations of indices divided by 
do+l-2-3. This solution is easily constructed by elementary considerations and has the 
form 

' 0 , 1 , 2 , 3  (2)  = - ~ 4 ~ ~ i - , - 3 [ 3 Z ~ ~ \ , z , 3 - Z ~ $ b , z , ~ - ~ ~ ~ ' , , o , i - ~ ~ ~ ) 2 , o , 1 1 .  (3.23) 
This solution is, formally, singular when d,,+l-2-3 + 0, but substituting in (3.23) the 
expression for from the Appendix (see footnote on p. 000) and using (3.1) and (3.3) 
shows that do+,_,_, is just cancelled here yielding 

(2) (3) A ( 3 )  (1)  
'0, 1 ,  2 ,  3 = '0, 1 ,  -0-1 2 ,  3 ,  -2-3 + A $ f ) 2 ,  1-2 'EL, 3-0 +A'1' 1 , 3 , 1 - 3  '2,0, 2-0 

- A ( 1 )  n + i , n , i  A ( 1 )  2+3,2,3-A0,2,o-zA3,i,3--1-Ao,3,o--3Az,i,2-i. (1)  (1)  (1) (1) (3.24) 
In Krasitskii (1990) the solution (3.24) was guessed as a solution of canonicity 

conditions derived through the Poisson brackets. Here it is found by a more systematic 
and simple way, close to that used below for determining the coefficient C(2). If the 
coefficient B ( 2 )  is known, the kernal pl') can be found from (3.5), the right-hand side 
of which satisfies all the symmetry conditions in (2.18), but in implicit form (in (3.5) the 
symmetry described by (2.18) is exhibited by the total sum on the right-hand side, but 
not by each separate term). It is such representation of the f ( 2 )  with the symmetry 
properties in implicit form that is obtained when substituting (3.24) in (3.5). 

Another representation for the kernel p ( 2 )  is obtained when substituting (3.23) in 
(3.5): 

(3.25) 
As distinct from (3.5), this expression depends on in implicit form but, on the 
other hand, possesses all the symmetry properties in (2.18) in explicit form. 

Note, that earlier (Zakharov 1966, 1968, 1974; Yuen & Lake 1982) the kernel 
'0,1, "(2) 2 , 3  = Zif:, 2 ,  + Vif\. 2 ,  was used as the kernel of the four-wave reduced equation, 
which is obtained from (3.5) if one formally put = 0 therein. This kernel no 
longer satisfies all the symmetry conditions in (2.18): it is symmetric only with respect 
to transpositions of the arguments 2 and 3, but not for 0 , l  and for transpositions of 
the pairs (0,l) and (2,3). This violation of the symmetry properties of the kernel leads 
to violation of the Hamiltonian structure of equation (2.23) (see the more detailed 
discussion in Krasitskii 1990). 

Now we turn to the determination of the canonical transformation coefficients C @ ) ,  
C ( 3 )  and the kernel of the five-wave reduced equation Using the symmetry of the 
kernel @if\. 2 ,  3, under the transpositions of the arguments 0 and 1, it is easy to derive 
from (3.9) the following equation for P): 

(3.26) 
which is, essentially, the canonicity condition for P). It is clear that its general 
solution Ci?;, 2 ,  3, 4, symmetric under the transpositions of the arguments 2,3,4, should 
be presented in the form of a sum of some particular solution A,,, 1, 2, !, 4, symmetric 
under the transpositions of the arguments 2,3,4, and 'an arbitrary function' A,,, 1, 2 ,  3,  4,  

symmetric under the transposition of the arguments inside the groups (0,l) and 
(2,3,4). Assuming h = 0, we will consider Cif\, 2 ,  3,  ? as a suitable particular solution of 
(3.26). This particular solution should be symmetric under the transpositions of 2,3,4 
and non-singular when d,,+1-2-3-4 + 0. As such a particular solution one may take 

(2) (2) (3.27) Co, 1 , 2 , 3 , 4  = - 2 Z - 2 - 3 - 4 [ x n ,  1 , 2 , 3 , 4 - x 1 , 0 , 2 , 3 , 4 I .  

"(2) vo, 1 ,  2 , 3  = i[zi::, 2 , 3  + ZEI, 2 , 3  + Zif$, 0 ,  1 + z& 0 , 1 1 +  Gf'l, 2 , 3 '  

d0+1-2-3-4[c0, (21 1 , 2 , 3 , 4  - ';:b, 2 , 3 , 4 1 +  xi:\, 2 , 3 , 4  - 2 , 3 , 4  = O, 

(2) 
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Actually, the symmetry of this solution under 2,3,4 is evident. Besides, lengthy and 
cumbrous algebra shows that 

x i ” : , 2 , 3 , 4 - x ~ ” , 2 , 3 , 4  = - 2d0+1-2-3-4[p0, 1 . 2 , 3 , 4  - <, 0, 2 , 3 , 4 I ,  (3.28) 
where the function Po, 1, 2, 3, is symmetric under the transpositions of 2,3,4 and is 
presented in the form 

‘0,1,2,3,4 =pO,1,2,3,4+PO,1,3,2,4+pO,1,4,2,3, (3.29) 

and the function po, 1, 2 ,  3,  is symmetric under 3,4; it is given in the Appendix (see 
footnote on p. 10). Thus, when substituting (3.28) in (3.27), the resonant frequency 
difference LIo+l-2-3-4 is cancelled yielding 

‘0, (2) 1 ,  2 , 3 , 4  - - ‘0,1,2, 3,4-‘1,0,3, 2, 4 ’  (3.30) 
Note that this expression is antisymmetric under 0 , l .  

for pi:;, 2 ,  ?, possesses the necessary symmetry under the transpositions of the 
arguments inside the groups (0,l) and (2,3,4) in implicit form. On the other hand, 
using nothing but the antisymmetry of Ci:i,2,3,4 under 0,1, we find from (3.9) 

W o , i , 2 , 3 , 4  - ( 2 )  = ~ [ x i ” , z , 3 , 4 + x ~ $ b , 2 , 3 , 4 1 +  w(2) 0,  1 , 2 , 3 , 4 ‘  (3.31) 

This representation of the kernel already possesses all necessary symmetry properties 
in explicit form. 

It remains to determine the coefficient Ciy\,2,3,4. It must be symmetric under the 
transpositions of the arguments inside the groups (1,2) and (3,4) and non-singular 
when LIo+1+2-3-4+0. Eliminating W(’) and W@) from (3.9) and (3.10), we obtain 

C Z ,  2 , 1 , 0  - - L I ~ ~ i - z - 3 - 4 [ x i ~ ~ , 2 , i , o - ,  3 x ( 2 )  0, i , z , 3 , 4 1 - 2  3 p )  o,i,z, 3 , 4 .  (3.32) 
Replacing the arguments 0 and 1 and adding the equality obtained to the initial one, 
we find 

The kernel W - (2) is ’ obtained by substituting (3.30) in (3.9). The resulting expression 

c ( 3 )  - 3[$2) 
4 , 3 , 2 , 1 , 0  = A ~ ~ 1 - 2 - 3 - 4 { x ~ ~ ~ , 2 , i , o  4 0 ,  i , ~ , 3 , 4 + ~ , ’ ” , ! ~ , 3 , 4 1 >  

- - -  l d - 1  - 3 p  3 (2) (3.33) 

In contrast with (3.32), this expression is already symmetric under 0 , l  in explicit form. 
Lengthy algebra gives 

(3.34) 
The awkward function Q is given in the Appendix (see footnote on p. 10). Substituting 
(3.34) into (3.33) gives 

2 0 + 1 - ~ - 3 - 4 { [ ~ ? k  2 , i ,  o 2 0, 1, z , 3 , 4 1  +[xi”, 2 , 0 ,  I -nx i ,  0 , 2 ,  3,411. 

x4,3, (3) 2,1,0-2 3 x ( 2 )  0 , 1 , 2 , 3 , 4  = ’0+1-2-3-4[Q4,3,2,1,0+ Q 4 , 2 , 3 , 1 , 0 1 .  

c 0 , 1 , 2 , 3 , 4  (3) - - 1  , [ Q o , i , z , 3 , 4 + Q 0 , , , , , 3 , 4  + Q o , 1 , 2 , 4 , 3 + Q o , z , i , 4 , 3 I .  (3.35) 
Thus, all the coefficients of the canonical transformation and the kernels of the 

reduced equation are determined. 
Note that omitting the last term (with the resonant frequency differences) in (3.5) 

and (3.9) violates necessary symmetry conditions for v(2) and which provide 
Hamiltoniaty of the reduced equations (2.23) and (2.25). But it can be proved that 
when the resonance conditions (2.27) and (2.28) are satisfied exactly (i.e. on the 
resonance surfaces themselves) these conditions are satisfied. It should also be 
emphasized that the above calculations do not impose any constraints on the smallness 
of the resonance frequency differences do+,+3 and Ao+1-2-3-4, and this essentially 
distinguishes our approach from those currently in use. 
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Consider now the possibility of the existence of 'integrals of motion' of the type 
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I = r(k) b*(k) b(k) dk. (3.36) 

For r(k) = k the quantity I is the wave momentum, and for r(k) = 1 it is the wave 
action. It follows from the five-wave reduced equation (2.25) that I evolves according 
to the equation 

s 

(3.37) 

It is seen from this equation that the five-wave reduced equation (2.25) conserves the 
momentum only, but the four-wave reduced equation conserves both the momentum 
and the action. Thus, the five-wave interactions, described by the fourth-order terms 
in (2.25), violate the wave action conservation law intrinsic only to the four-wave 
interactions. Equation (3.37) with r(k) = 1 permits us to estimate this effect 
quantitatively. Of course, both equations (2.23) and (2.25) conserve the reduced 
Hamiltonian (2.22) and (2.24) respectively. 

We stress that for the derivation of equation (3.37) all symmetry properties of the 
kernels are required. If, for example, we use the kernel fi:\,2,? = Z$z\,2,3+ V,$:i,z,3 
discussed above instead of the kernel (3.5) or (3.25), then an equation like (3.37) cannot 
be derived, and the above conservation laws do not hold, as was noticed by Caponi et 
al. (1982). 

4. Expansion of the Hamiltonian 
This article would be incomplete without presenting the expansion coefficients of the 

Hamiltonian H,  which enter practically all the above expressions. The expansion up to 
the fourth-order terms in a and a* for the case of deep-water waves has been given by 
Zakharov (1968), but with a number of omissions. Most of the papers have derived an 
evolution equation for a like (2.13) from original hydrodynamical equations, without 
the Hamiltonian formulation and the related expansion of the Hamiltonian. As has 
been pointed out in the introduction, the coefficients of the evolution equation 
obtained this way usually do not satisfy the symmetry conditions expressing the 
Hamiltonian structure of the system. Here we present an expansion of H with accuracy 
up to the fifth-order terms for capillary-gravity waves on fluid of finite depth. 

The general solution of the Laplace equation satisfying the bottom boundary 
condition can be presented by the following Fourier integral: 

The calculations then proceed as follows: (1) expand the Hamiltonian H in powers 
of <(k) and $(k) with accuracy up to the fifth-order terms; (2) express $(k) through <(k) 
and +(k) with accuracy up to the fourth-order terms; (3) present H through the 
canonically conjugate variables <(k) and +(k) with accuracy up to the fifth-order 
terms; (4) present H through the normal variables a(k) and a*(k) with accuracy up to 
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the fifth-order terms using the formulae (2.7). We turn now to realization of this plan 
and present the key points of the calculations. 

(1) Turn first to the expression (2.2) for the kinetic energy K. Using (4.1) we find 

where n sinh [m(h + [)I + srn sinh [n(h + 91 
I S  = 7 s = + ,  mn[cosh (mh) -cash (nh)] 

with rn = (k(  + lkl(, n = Ik( - lkll. 
Assuming 1k(< is small (weak nonlinearity), we replace the hyperbolic sines in I" by 

their Taylor-series expansions up to orders (me):>" and (nc)', which is sufficient for 
presenting the kinetic energy with accuracy up to the fifth-order terms. Then, using 
(2.4) we present expansion of the kinetic energy in the form 

1 -mbi4\ ( P O  $1 [Z L3 SO+l+2+3 d k O l Z 3  

with 

Ki:\ = cotanh ((klh) cotanh ((k,lh) [(kqk,) - qn ql], 
Ki;; = icotanh(1kJh)cotanh (Jk,lh)C[(k.kl)-lk,12]qn+[(k.k,)-lk12] ql}, 
Ki,Pi = +cotanh((k(h)cotanh((kl(h)[(/k(2+ (k112)(k.kl)-21k(2(k112- I k-k,(2qoql].  

In the above expressions q(k) is given in (2.9) and we have used compact notation 
together with complete one where it is convenient. 

The highest-order term in the expansion of the potential energy (2.3) is the fourth- 
order one (the next terms are already of the sixth order). This expansion is trivial and 
does not need special explanation : 

with 

f l (4 )  = -~ 
n, I ,  z , 3  24(2~)' 

' [(k ki) (kz k3) + (k' kz) ( k l  ' k3) + (k' k 3 )  (ki' k ~ ) l .  

Here ~ ( k )  is given in (2.9) and proper symmetrization has been made for 17g)l, 2, 3. Thus, 
we have found the expansion of H = K+ 17 in terms of the functions <(k) and #(k) with 
accuracy up to the fifth-order terms. 

(2) To express H in terms of c(k) and @(k) one should first find the relation of $(k) 
to <(k) and $(k). It is clear from the structure of (4.2) for K that this relation should 
be found with accuracy up to the fourth-order terms. We have from (4.1) 

with < = [(x). This formula, together with (2.4) and (2.5), give the required relation. 
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To find this relation in explicit form the hyperbolic cosine in (4.4) should be replaced 
by a Taylor-series expansion up to order (lklc):)”. Using this expansion and (2.4), (2.5) 
and (4.4) we obtain 

. c  

This equation should be solved by iterations relative to $(k) with accuracy up to the 
fourth-order terms in c(k) and $(k). The solution, after proper symmetrization, is 

where 
‘?)l, 2,  3 = i(lkl/2-ql qO-2-ql 90-317 

(4) 
@ n , i , 2 , 3 , 4  = ~[~i(lkiI2-I~i+kzl2-I~i+k3I2-I~i+k~I2) 

- /kl12(qO-2 + q0-3 +q0-4) + 41 40-2(41+4 + ql+3) 
+ 41 q0-3(ql+4 + 4 1 + 2 )  + 41 q0-4(q1+3 + 41+2)1’ 

(3) We can now present H in terms of the canonically conjugate variables <(k) and 
$(k) with accuracy up to the fifth-order terms. The potential energy is expressed 
through c(k) only. So one should transform the kinetic energy by substituting (4.6) into 
(4.2) and retaining therein the terms up to the fifth order. After cumbrous algebra with 
numerous cancellations one obtains relatively simple result : 
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In the case of deep-water waves one should just replace q(k) by (kl in the above 
formulae. 

At this stage of the calculations, the pair of canonically conjugate Hamilton 
equations (2.6) for <(k) and $(k) can be written in the explicit form: 

f 2  sE$, 1 , 2 , 3 , 4  $1 C'2 <3 C4 '0-1-2-3-4 dk]234> (4'8) 

% + T o  C0 = - E ( 3 )  
at 1 1 , 2 ,  -0 $1 $2 '0-1-2 dk12-2 JEi.!2, 3, -0 $1 $2 C3 sO-1-2-3 d k 1 2 3  

s ( 5 )  

1 (41 -4 nl ,  2 , 3 ,  -0 51 C2 Q 80-1-2-3 d k i 2 3  - 3 E l ,  2 , 3 , 4 ,  -0 $1 k2 <3 C4 s0-1-2-3-4 dk1234, (4.9) 

where the surface tension is also included. 
In some respects, this system of equations seems more convenient for numerical 

study of combined four- and five-wave interactions than the reduced equation (2.25). 
Firstly, these equations have simpler kernels, and, secondly, they give {(k) directly 
rather than the auxiliary variable b(k), which is related to <(k) through a(k) by a 
complicated canonical transformation. Note that the kernels on the right-hand sides of 
these equations are related, in any given order, to each other through the same 
coefficients E@) by quite definite way, expressing the Hamiltonian structure of these 
equations. To obtain such a structure from original hydrodynamical equations is 
practically impossible. 

(4) Finally, it remains to express the Hamiltonian H in terms of the normal variable 
a(k) and obtain the coefficients U ( % ) ,  Vn) ,  Wn)  in expansion (2.11). To do this, one 
should just substitute (2.7) into H expressed above through <(k) and yk(k). After proper 
symmetrication, we obtain the following expressions : 

'(1) - 1 
'it'l, 2 = - '-0, 1 ,  2 - '-0, 2 , l  + '1, 2, -07 'i::, 2 = '0, 1 ,  2 + '0, 2 , 1  + '1, 2 ,0 ,  

O , l ,  2 , 3  - d- yo, 1 , 2 , 3 -  KO, 2 , 1 , 3 -  yo, 3 , 1 ,  a+ q 2 ,  - 0 , 3  

+ K ,  3, -0 ,2  + G, 3,  - 0 , l  ) - 4 G , 1 , 2 , 3 ,  

'if'l,2,3 = v 0 , - 1 , 2 , 3 +  b , 3 , - 0 , - 1 -  y O , 2 , - 1 , 3 -  y 1 , 2 , - 0 , 3  

'-0,3, -1, 2 -  '-1,3, - 0 . 2 + 1 2 G ,  1 ,  2 ,3 ,  
- 

(4) 
'0,1,2,3 = + ( & , 1 , 2 , 3 +  % , 2 , 1 , 3 +  b 0 , 3 , 1 , 2 +  ' 1 , 2 , 0 , 3  + y ,  3 , 0 , 2  + K, 3,O.I)  + '&,I, 2.3' 

- 
wi?; .2 ,3 ,4  - i ( y . 2 , 3 , 4 , - 0 +  % , 3 , 2 , 4 , - 0 +  q . 4 ,  2 ,3 , -0  

+ % , 3 , 1 , 4 , - 0 +  K , 4 , 1 , 3 , - 0 +  K , 4 , 1 , 2 , - 0 -  w-0 ,1 ,2 ,3 ,4  

- w-0 ,2 ,1 ,3 ,4 -  w-0 ,3 ,1 ,2 ,4  - w-0,4,1,2,3>,  

w i? l , 2 ,3 ,4  = 2 ( w - 0 , - 1 , 2 , 3 , 4 -  W o , 2 , - 1 , 3 , 4 -  & , 2 , - 0 , 3 , 4  

% k ' l , 2 , 3 , 4  = ~ ( % , 1 , 2 , 3 , 4 +  w , , 2 , 1 , 3 , 4 +  w 0 , 3 , 1 , 2 , 4  

where U o , l , z  = -N0J l r1~2~ i : ' l , 2 ,  v , , , , , , ,  = - ~ N , N , A ~ A ~ E ~ ~ \ , ~ , ~ ,  

Vn) ,  W n )  satisfy all necessary symmetry conditions. 

- W - o , 3 , - 1 , 2 , 4 -  K 1 , 3 , - 0 , 2 , 4 -  W - o , 4 , - 1 , 2 , 3 -  K 1 , 4 , - 0 , 2 , 3 +  % , 3 , - 0 , - 1 , 4  

+ % , 4 , 0 , - 1 , 3 +  &,4,-0,-1,2)3 

+ % , 4 ,  1 ,  2 , 3 +  e , 2 , 0 , 3 , 4 +  q , 3 , 0 , 2 , 4 +  4 , 4 , 0 , 2 , 3  + % , 3 , 0 ,  1 , 4 +  K,d,o, 1 , 3 +  & , 4 , 0 ,  1 ,2) ,  

G . 1 , 2 , 3  = 40 41 At A3 n::, 2 , s '  %, 1 , 2 , 3 , 4  = -No 4 3  = M 4  Ei", 2, 3 , 4 .  
The functions 
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5 .  Discussion 
This paper was stimulated by publications which discuss, in some way or another, 

the non-Hamiltonian structure of reduced equations for surface gravity waves, though 
the problem of constructing the Hamiltonian reduced equations is of general 
importance for weakly nonlinear waves in conservative dispersive media allowing a 
Hamiltonian description (see e.g. the review by Zakharov 1974). The canonical 
transformation technique solves the problem in a natural way, resulting in Hamiltonian 
reduced equations. 

In view of the fact that the non-Hamiltonian reduced equations remain in use and 
many interesting results have already been obtained based on them, it seems necessary 
to estimate their accuracy as compared to the Hamiltonian ones. The most direct way 
of such an estimation consists in a comparison of consequences from non-Hamiltonian 
and Hamiltonian reduced equations. Such a comparison for the case of the four-wave 
reduced equation applied to the deep-water gravity waves was recently given by 
Krasitskii & Kalmykov (1993). Two typical examples were considered: the mod- 
ulational instability of a uniform Stokes wave train and the long-time evolution of a 
discrete wave system. Overall, one can draw the conclusion that distinctions in 
solutions of the reduced equations in the non-Hamiltonian and the Hamiltonian forms 
are revealed only for sufficiently large nonlinearity of the wave system. It should be 
noted that the non-Hamiltonian form of the reduced equations do not give any 
simplifications in either analytical or numerical analysis. Thus it should not be used. 

Consider now some statistical aspects associated with the reduced equations and the 
canonical transformation. Define the ‘observable’ wavenumber spectrum F(k) of a 
horizontally uniform random wave field by 

w(k) N(k), (a(k)  a*(k’)) = N(k) 6(k = k’), 
1 F(k) = - ~ 

(2nI2 g 
where the angle brackets imply an ensemble average. The observable spectrum is 
normalized by the condition (c)  = F(k) dk and has the property F(k) =l= F( - k) ,  in 
view of which it is called non-symmetric. Note that the function N(k) coincides, correct 
to the factor ( 2 ~ ) ~ g ,  with the spectral wave action F ( k ) / ~ ( k ) .  By analogy with F(k) and 
N(k)  we define the functionsf(k) and n(k)  by 

We call f (k )  and n(k)  weak-interaction spectra to distinguish them from observable 
ones. Using the usual quasi-Gaussian closure one can derive from the five-wave 
reduced equation (2.25) the following kinetic (transfer) equation for n(k)  : 

I 1  [ no n1 nz n3 n4 

1 1 1 1  + 12n J [FV:”, ,, 3 ,  ~ z n ,  n1 n2 n3 n, - +- - ---- - 

1 1 1 1  
no n1 nz n3 n4 

+ 18n 1 [@i”, 2 ,  1,  o]2no n1 n, n3 n, -+-+----- 
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The first integral on the right-hand side of (5.1) corresponds to the four-wave kinetic 
equation derived by Hasselmann (1962), and the two other integrals describe spectral 
energy transfer due to the five-wave interactions; the dots at the end of the equation 
represent fourth-order terms in n, not written down here, originating from cubic in b 
terms in the reduced equation (2.25) and, thus, depending on P@). 

Consider the possibility of the existence of conservation laws of the form 
J = r(k) n(k) dk for equation (5.1). For r = k the quantity J is proportional to the 
mean momentum of the random wave field, for r = w(k) it is proportional to the mean 
potential energy and for r = 1 it is proportional to the mean wave action (all the 
quantities refer to unit horizontal area). It is easy to find from (5.1) that the quantity 
J evolves according to the equation 

+ 6 ~  [ @$',, 2 ,  3,4]2[ro + r1 - r z  - r3  - r4] no n1 n, n3n4 s 
'(w0+wl-w2-w3-w4) '0+1-2-3-4 dk01234' (5.2) 

It is seen from this equation that aJ/at  = 0 for r = k and for r = w(k) ,  i.e. the five- 
wave kinetic equation conserves the momentum and the energy (of course, these 
conservation laws should be valid for any number of interacting waves). At the same 
time, the first integral in (5.2) vanishes for r = 1, and the second one does not vanish, 
i.e. the four-wave kinetic integral conserves the wave action, and the five-wave one 
leads to violation of this conservation law. 

At the same time, many important inferences from the four-wave kinetic equation 
are connected just with the wave action conservation law, in particular the inference 
about the existence of a Kolmogorov power-law spectrum caused by constant action 
flux from the short-wave to long-wave range of the spectrum (Zakharov 1984). Thus 
taking account of five-wave interactions, violating the wave action conservation law, 
does not just improve precision, related to allowing for higher-order terms in 
perturbation theory, but is of principal significance. Evolution of the action is 
described by (5.2) with r = 1. 

Usually the difference between N(k) and n(k) is either ignored and these spectra are 
simply identified, or else is not mentioned. In practical applications we need the 
observable spectrum F(k), so we have to consider its relationship toflk). 

We can find this relationship using the canonical transformation (2.17) and a 
statistical hypothesis similar to that employed in the derivation of the kinetic equation. 
Using (2.17), we have to calculate the correlation function (a(k)  a*(k')), and apply the 
Gaussian hypothesis to the correlation functions of higher orders in b, which appear 
on the right-hand side of the equation. This calculation procedure yields 

No = no + 4n0 Bg:, o ,  ~ 1 ,  dk, 

(3) 

s 
+ 2 / { [ A t : ,  0-11"1 4 - 1  + 2[AblJ1, 0,  1l"l %+l + [A,, 1,  -0-,l2n1 n-0-d dkl + . . . 3 (5.3) 

where the dots at the end of the equation represent cubic and fourth-order terms in n, 
not written down here, originating from corresponding terms in the canonical 
transformation (2.17). 
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In practical applications (5.3) calls for numerical calculations. However, some simple 
conclusions can be drawn even using its general structure. First, the power-law spectra 
n(k)  (for example, the Kolmogorov spectra which are just weak-turbulence ones) when 
transformed to the observable spectra N(k),  are no longer of the power-law type, at  
least because of the complex dependence of A(n)  on k .  Secondly, in the case of spectra 
n(k)  which are narrow in the k-space and concentrated, say, in the vicinity of the wave 
vector k,, the spectra N(k)  exhibit additional 'secondary' peaks at kf 2k,, kf 3k0, 
k$4k,  (the latter are due to the cubic and the fourth-order terms in n which are not 
included in (5.3)). This is easily seen in the limiting case of a monochromatic wave, 
when n(k)  = cS(k-k,), c = const, and (5.3) yields 

N(k) = cS(k - k,) + 4C2B'2'(k0, k,, k,, k,) S(k - k,) 

+ 2c2{[~(1)(2k,, k,, k,)ys(k - 2k,) + [ ~ ( 3 ) ( -  2k0, k,, k,)ys(k + 2k,)) + . . . . 
The nature of these peaks is essentially the same as in the pioneering work by Tick 

(1959), who seemingly was the first to carry out perturbation analysis of a random sea 
surface up to the second-order terms. Such secondary peaks are frequently observed in 
the measured spectra of wind waves in the ocean (in this case k, is the wave vector of 
the main maximum in the spectrum). The angular energy distribution of N(k)  and n(k )  
is also different. Roughly speaking, the distinctions between N(k) and n(k)  are of the 
order of the square of spectral component steepness and can be seen (as numerical 
estimates for model wind wave spectra have shown) only in a short-wave range of the 
spectrum, far from the spectral maximum (so these distinctions can be neglected when 
describing energy-containing spectral components of wind waves in the ocean). 

To show the connection of our fourth-order depth-dependent equations (4.8) and 
(4.9) with other known approximate equations (and to check, to some extent, the 
coefficients in these equations) we consider the limit of shallow-water weakly dispersive 
waves. We approximate the function qo on the left-hand side of (4.8), describing 
dispersion of linear waves, by the expression g(k) z lk)2h-#(4h3; in the coefficients 
E(3)  and we let 
q(k) = 0. In this case we have 

we use the approximation q( k)  z lkI2h; and in the coefficient 

In this approximation, (4.8) and (4.9) in coordinate representation correspond to the 
' Boussinesq-like evolution equation' 

a$ SH 
at 8c 

where now 5 = [(x, t ) ,  $ = +(x, t) ,  h = h + [ is the depth beneath the displaced surface, 
and 

H = 3 {g$+y[(V[)2-~(V~4]+h"(V$)2-$3(V21,b)2)dx. 

- = -g[+~{v"-;v.[(vgn"v~}-;(v~)"+(hV2$)2 = --, 

'S 
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This expression for H i s  obtained using (4.3), (4.7), and the above approximations for 
E(n) .  

These Boussinesq-like equations have been derived by other methods by a number 
of authors, e.g. Miles & Salmon (1985) (see also references therein). Note that in the 
considered limit of shallow-water weakly dispersive waves the Hamiltonian H in 
coordinate representation is local functional of 5 and @, in contrast with the general 
case of arbitrary depth in which H i s  a non-local functional of these variables, as Miles 
(1977) has pointed out. 

I wish to acknowledge the always interesting and stimulating conversations with 
Professor V. E. Zakharov. I am also grateful to Professor B. J. West for pointing out 
his book and to referees for suggestions. 
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